

Sage 300 Web API

Developer Reference

December 2019

© 2019 The Sage Group plc or its licensors. All rights reserved. Sage, Sage logos, and

Sage product and service names mentioned herein are the trademarks of The Sage Group

plc or its licensors. All other trademarks are the property of their respective owners.

Sage 300 Web API – Developer Reference Page 3 of 27

1. Introduction .. 5

2. Making a Sage 300 Web API request .. 6

2.1 Anatomy of a resource URL ... 6

2.2 HTTP headers ... 6

2.2.1 Authorization ... 7

2.2.2 Content-Type ... 7

2.3 Payload .. 7

2.3.1 Ordering of properties .. 8

2.3.2 Partial payloads ... 8

3. Discovering resources .. 10

4. Requesting a resource feed (HTTP GET) ... 13

4.1 Basic .. 13

4.2 Query options .. 13

4.2.1 $skip .. 13

4.2.2 $top ... 14

4.2.3 $count ... 14

4.2.4 $filter ... 15

4.2.5 Format of literals within filter parameter ... 16

4.2.6 Combining query options ... 16

5. Requesting a resource entry (HTTP GET) .. 17

5.1 Basic .. 17

5.1.1 Entity key without property name ... 17

5.1.2 Entity Key with property name ... 17

5.2 Composite Key .. 18

6. Deleting a resource entry (HTTP DELETE) .. 19

7. Inserting a resource entry (HTTP POST) .. 20

8. Updating by replacement (HTTP PUT).. 21

9. Invoking special services (HTTP POST)... 22

10. Retrieving resource templates (HTTP POST) .. 23

Contents

Sage 300 Web API – Developer Reference Page 4 of 27

11. Errors .. 24

11.1 Error code .. 24

11.2 Error message ... 25

12. Performance tips .. 26

12.1 Increase page size for GET requests ... 26

12.2 Change IIS Idle Time-out settings .. 26

Sage 300 Web API – Developer Reference Page 5 of 27

Sage 300 has a longstanding history of interoperability with third-party integrations and

systems. With the advent of the Sage 300 XAPI, third party developers were able to directly

access the Sage 300 business layer, performing tasks such as data manipulation and system

process invocation. Then came the Sage 300 COM interface which, on top of the XAPI, added

the ability to cross machine boundaries via ActiveX objects on remote clients. Not soon after

came our .NET interface which streamlined the way developers integrate with Sage 300.

However, using the aforementioned interfaces required intimate knowledge of the Sage 300

business layer. One requirement is to understand the View protocol which encapsulates

accesses to the data layer. Another requirement is to have a complete understanding of what

specific View components do and how they relate and interact with one another. Even though

the technology is there to access the interfaces, the work involved is anything but trivial.

The Sage 300 Web API layer was created as a way to solve this complexity. It is based on

OData which, aside from being a common standard for interfacing over the web, is self-

documenting through XML+Atom Pub making it very easy to understand. Data is transferred in

JSON format making it human readable while still maintaining good performance. Many

frameworks and tools are available to make interfacing easier; in fact, it is possible to retrieve

Sage 300 data with just a web browser.

1. Introduction

Sage 300 Web API – Developer Reference Page 6 of 27

2.1 Anatomy of a resource URL

Example: http://localhost/Sage300WebApi/v1.0/-/SAMLTD/AR/ARCustomers

The first step in making a Web API request for a Sage 300 resource is to construct the

corresponding uniform resource locator (URL). Here are the components that comprise a

Sage 300 resource URL:

{protocol}://{host-application-path}/{api-version}/-/{company}/{app-module}/{resource}

Component Description Examples

{protocol} The application protocol

enabled in IIS setup

http, https

{host-application-path} The path to the Web API

application

localhost/Sage300WebApi,

yourdomain.com

{api-version} The API version v1.0

{company} The org ID of the company

being requested

SAMLTD, SAMINC

{app-module} Sage 300 application

module where the requested

resource resides

GL, AP, AR

{resource} The resource entity being

requested

GLAccounts, APVendors,

ARCustomers

For a complete list of resources that Sage 300 Web API supports, refer to the Sage 300 Web

API Endpoint Reference document, available under “Technical Documentation” here:

http://cdn.na.sage.com/docs/en/customer/300erp/Documentation.htm

Additionally, the list of resources can be discovered through $metadata requests. Refer to the

“Discovering resources” section of this document for more information.

2.2 HTTP headers

In addition to constructing the appropriate URL, a Sage 300 Web API request requires two

HTTP headers to be specified: authorization and content type.

2. Making a Sage 300 Web API request

http://cdn.na.sage.com/docs/en/customer/300erp/Documentation.htm

Making a Sage 300 Web API request

Sage 300 Web API – Developer Reference Page 7 of 27

2.2.1 Authorization

Example:

Authorization: Basic QURNSU46QURNSU4=

(constructed for user "ADMIN" and password "ADMIN")

The Sage 300 Web API uses Basic Access Authentication for authorization control. Every

request made must have an authorization header field with a value constructed using a valid

Sage 300 username and corresponding password.

If security has been turned off for the given system database, an empty password should be

used when constructing the Basic Access Authentication value.

In order to construct the value for the authorization header, the username must first be

concatenated with the password with a colon as the separator (username:password). This

value must then be encoded using Base64 (RFC2045-MIME) and be appended to the phrase

"Basic " (Note the trailing <space> character) Thus, for the case of user ADMIN with a

password of ADMIN, the Authorization header value would yield:

Basic QURNSU46QURNSU4=

For more information about Basic Authentication, refer to section 2 of the RFC 2617

documentation:

https://www.ietf.org/rfc/rfc2617.txt.

2.2.2 Content-Type

Example: Content-Type: application/json

All Sage 300 Web API requests are required to specify a Content-Type header value of

application/json. Not doing so will result in an HTTP response code of 500, indicating an

Internal Server Error.

2.3 Payload

Some types of requests, like those that update resources in Sage 300 will require a payload in

the body of the request. Payloads use the JavaScript Object Notation (JSON) data-

interchange format. Here is an example of what a typical payload looks like:

{

 "CustomerNumber": "1200",

 "ShortName": "BLACK",

 "GroupCode": "RTL",

 "NationalAccount": "",

https://www.ietf.org/rfc/rfc2617.txt

Making a Sage 300 Web API request

Sage 300 Web API – Developer Reference Page 8 of 27

 "Status": "Active",

 "InactiveDate": null,

 "DateLastMaintained": "2010-08-18T00:00:00",

 "OnHold": "No",

 "AccountSet": "USA",

 "AccountType": "BalanceForward",

 "Terms": "DUETBL",

 "TaxGroup": "CALIF",

 "CustomerOptionalFieldValues": [

 {

 "CustomerNumber": "1200",

 "OptionalField": "CREDTWARNING",

 "Value": "0",

 "CustomerOptionalFieldValueType": "YesNo",

 },

 {

 "CustomerNumber": "1200",

 "OptionalField": "UPSZONE",

 "CustomerOptionalFieldValueType": "Text",

 "Value": "RED",

 }

]

}

2.3.1 Ordering of properties

When constructing a Sage 300 Web API request, it is important to consider the order of the

properties within a JSON payload carefully because the order in which the properties appear

will be reflected in the order in which they are applied to the system.

For those experienced with Sage 300 Views, this means that the corresponding View fields will

be Put to in the order that they appear in the payload. Thus, the ordering of properties can

cause very different results for some resources.

2.3.2 Partial payloads

Sage 300 Web API resources supports the use of partial payloads for all HTTP verbs. More

specifically, properties can be left out of the JSON payload where the corresponding default

value is sufficient.

Making a Sage 300 Web API request

Sage 300 Web API – Developer Reference Page 9 of 27

In addition to simplifying the construction of a Sage 300 Web API request, using partial

payloads has the added benefit of improving performance dramatically. As such, Sage

recommends the use of partial payloads in most cases.

Sage 300 Web API – Developer Reference Page 10 of 27

Example: GET http://localhost/Sage300WebApi/v1.0/-/SAMLTD/AR/$metadata

The $metadata resource is used for discovering the list of resources available through the

Sage 300 Web API and learning about the properties these resources support. A GET request

made on the $metadata resource returns an Atom (XML) based EDMX document containing a

complete listing of the feeds, types, properties and relationships that are exposed.

Since the $metadata resource is company and application specific, both the company org ID

as well as the application module ID must be specified within the GET request. The format for

this request is described in the following:

{protocol}://{host-application-path}/{api-version}/-/{Company}/{app-module}/$metadata

The following is an extract of a sample response you can expect from the $metadata request

on SAMLTD and AR:

<?xml version="1.0" encoding="utf-8"?>

<edmx:Edmx Version="4.0" xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx">

 <edmx:DataServices>

 <Schema Namespace="Sage.CA.SBS.ERP.Sage300.AR.WebApi.Models" xmlns="
http://docs.oasis-open.org/odata/ns/edm">

 <EntityType Name="Customer">

 <Key>

 <PropertyRef Name="CustomerNumber" />

 </Key>

 <Property Name="CustomerNumber" Type="Edm.String"
Nullable="false" />

 <Property Name="ShortName" Type="Edm.String" />

 <Property Name="GroupCode" Type="Edm.String" />

 <Property Name="NationalAccount" Type="Edm.String" />

 <Property Name="Status" Type="
Sage.CA.SBS.ERP.Sage300.AR.WebApi.Models.StatusEnum" Nullable="false" />

 <Property Name="InactiveDate" Type="Edm.DateTimeOffset" />

 <Property Name="DateLastMaintained" Type="Edm.DateTimeOffset" />

 <Property Name="OnHold" Type="
Sage.CA.SBS.ERP.Sage300.AR.WebApi.Models.OnHoldEnum" Nullable="false" />

 <Property Name="AccountSet" Type="Edm.String" />

3. Discovering resources

Discovering resources

Sage 300 Web API – Developer Reference Page 11 of 27

 <Property Name="AccountType" Type="
Sage.CA.SBS.ERP.Sage300.AR.WebApi.Models.AccountTypeEnum" Nullable="false" />

 <Property Name="Terms" Type="Edm.String" />

 <Property Name="TaxGroup" Type="Edm.String" />

 <Property Name="CustomerOptionalFieldValues"
Type="Collection(Sage.CA.SBS.ERP.Sage300.AR.WebApi.Models.CustomerOptionalFieldV
alue)" />

 ...

 </EntityType>

 <ComplexType Name="CustomerOptionalFieldValue">

 <Property Name="CustomerNumber" Type="Edm.String" />

 <Property Name="OptionalField" Type="Edm.String" />

 <Property Name="Value" Type="Edm.String" />

 <Property Name="CustomerOptionalFieldValueType" Type="
Sage.CA.SBS.ERP.Sage300.AR.WebApi.Models.CustomerOptionalFieldValueTypeEnum"
Nullable="false" />

 ...

 </ComplexType>

 ...

 </Schema>

 ...

 <Schema Namespace="Default" xmlns="http://docs.oasis-
open.org/odata/ns/edm">

 <EntityContainer Name="Container">

 <EntitySet Name="ARCustomers"
EntityType="Sage.CA.SBS.ERP.Sage300.AR.WebApi.Models.Customer" />

 ...

 </EntityContainer>

 </Schema>

 </edmx:DataServices>

</edmx:Edmx>

Examining this Atom feed, we see that all the available resources are listed near the bottom

inside a Schema node with the Default Namespace. Here we discover a resource named

Customers with an EntityType of Sage.CA.SBS.ERP.Sage300.AR.WebApi.Models.Customer. Thus,

specifics about the AR Customer model can be found inside the Schema node with a

Namespace of Sage.CA.SBS.ERP.Sage300.AR.WebApi.Models. Examining the top of the feed,

we see the properties within the AR Customer model:

<Key>

 <PropertyRef Name="CustomerNumber" />

Discovering resources

Sage 300 Web API – Developer Reference Page 12 of 27

</Key>

<Property Name="CustomerNumber" Type="Edm.String" Nullable="false" />

<Property Name="ShortName" Type="Edm.String" />

...

<Property Name="CustomerOptionalFieldValues"
Type="Collection(Sage.CA.SBS.ERP.Sage300.AR.WebApi.Models.CustomerOptionalFieldV
alue)" />

By examining the Key node, we discover that Customer has a key with a single property called

CustomerNumber. Note that resources with a composite key will have multiple children within

this node.

We also see the properties of a Customer listed. For example, we see a property named

ShortName of type string. The CustomerOptionalFieldValues is a special property because its

type is a collection of CustomerOptionalFieldValue. This is an example of a detail relationship

where there is a one-to-many correspondence.

In the current version of the Sage 300 Web API, details are exposed as ComplexType nodes.

As you can see below, in the Customer EntityType node, the properties of

CustomerOptionalFieldValues are listed in the ComplexType node with the Name

CustomerOptionalFieldValues.

<ComplexType Name="CustomerOptionalFieldValues">

 <Property Name="CustomerNumber" Type="Edm.String" />

 <Property Name="OptionalField" Type="Edm.String" />

 <Property Name="Value" Type="Edm.String" />

 <Property Name="CustomerOptionalFieldValueType" Type="
Sage.CA.SBS.ERP.Sage300.AR.WebApi.Models.CustomerOptionalFieldValueTypeEnum"
Nullable="false" />

 ...

</ComplexType>

The same method of discovery can be made for all other resources in the system.

Sage 300 Web API – Developer Reference Page 13 of 27

4.1 Basic

Example: GET http://localhost/Sage300WebApi/v1.0/-/SAMLTD/AR/ARCustomers

GET {protocol}://{host-application-path}/{api-version}/-/{company}/{app-

module}/{resource}

The simplest way to retrieve records of a particular resource is to call a GET directly on the

resource. The result is a list of records presented as an OData feed.

Currently the maximum number of records that can be returned for a single GET request is

100. In order to retrieve records beyond the first 100 or find records based on a given set of

criteria, the use of query options is required.

To reduce the number of requests necessary for transferring large datasets, the maximum

page size can be adjusted from the default value of 100 records per request.

4.2 Query options

{protocol}://{host-application-path}/{api-version}/-/{company}/{app-

module}/{resource}?{query-options}

Component Description Examples

{query-options} $skip=100

$filter=CustomerNumber eq

'BARMART'

Query options allow the caller to specify a subset of records to be returned in the response

feed. The query options portion of a Sage 300 Web API request appears at the end of the

request URL and begins with a question mark symbol (?). Each type of query option is prefixed

with a dollar sign character ($) as listed in the following subsections.

4.2.1 $skip

Example: GET http://localhost/Sage300WebApi/v1.0/-

/SAMLTD/AR/ARCustomers?$skip=100

The $skip query option must be a positive integer N that specifies the records beyond which

the response feed should start with, effectively skipping N records. This is typically used to

retrieve records beyond the top 100, the default maximum limit of a single response page.

4. Requesting a resource feed (HTTP GET)

Requesting a resource feed (HTTP GET)

Sage 300 Web API – Developer Reference Page 14 of 27

4.2.2 $top

Example: GET http://localhost/Sage300WebApi/v1.0/-/SAMLTD/AR/ARCustomers?$top=5

The $top query option must a positive integer N that specifies the maximum number of records

the response feed could contain, effectively selecting the first N records.

4.2.3 $count

Example:

GET http://localhost/Sage300WebApi/v1.0/-/SAMLTD/AR/ARCustomers?$count=true

The $count query option specifies whether a count of all records will be returned as part of the

response feed, regardless of how many records are actually returned in the response.

The following is an excerpt of a sample response from querying AR Customers:

{

 "odata.context": "http://localhost/Sage300WebApi/v1.0/-
/SAMLTD/AR/$metadata#ARCustomers",

 "odata.count": "625",

 "value": [

 {

 "CustomerNumber": "1100",

 ...

 },

 {

 "CustomerNumber": "1105",

 ...

 },

 ...

]

}

Note that even though the page only contains 100 customers, odata.count is 625, indicating

there are a total of 625 customers in the company.

Requesting a resource feed (HTTP GET)

Sage 300 Web API – Developer Reference Page 15 of 27

4.2.4 $filter

Example: GET http://localhost/Sage300WebApi/v1.0/-

/SAMLTD/AR/ARCustomers?$filter=ShortName eq 'BLACK'

The $filter query option specifies a set of criteria that records must satisfy before being

returned, effectively allowing the caller to retrieve a subset of the resource collection based on

a specified filter. This filter is constructed using the OData filter expression language and is

very flexible.

Expressions can reference properties as well as literals. Literal values can be strings enclosed

in single quotes, dates, numbers, and boolean values.

The following is a list of the operators that are supported in the Sage 300 Web API:

Operator Description Example

eq Equals /ARCustomers?$filter=CustomerName eq ‘1200’

ne not equals /ARCustomers?$filter=AccountType ne

'BalanceForward'

gt greater than /ARCustomers?$filter=NumberOfDaysToPay gt 30m

lt less than /ARCustomers?$filter=AmountPastDue lt 99.99m

le less than or equal to /ARCustomers?$filter=DateLastMaintained le

datetime'2015-12-31T12:00'

and logical and /ARCustomers?$filter= GroupCode eq 'WHL' and

OnHold eq ‘No’

or logical or /ARCustomers?$filter=City eq 'Los Angeles' or

City eq 'San Francisco'

The following is a list of functions that are supported:

Operator Example

bool substringof(string po, string p1) /ARCustomers?$filter=substringof('BAR',

CustomerNumber)

bool endswith(string p0, string p1) /ARCustomers?$filter=endswith(CustomerNumber,

'MART')

bool startswith(string p0, string p1) /ARCustomers?$filter=startswith(CustomerNumber,

'BAR')

int length(string p0) /ARCustomers?$filter=length(CustomerName) gt 10

Requesting a resource feed (HTTP GET)

Sage 300 Web API – Developer Reference Page 16 of 27

4.2.5 Format of literals within filter parameter

When using literal values within a filter parameter, they must be formatted properly for the

value to be recognized. Here is a list of literal types that have special formatting.

Literal Type Example

String ‘1200’

Decimal 99.99m

DateTime datetime'2015-12-31T12:00'

4.2.6 Combining query options

Example: GET http://localhost/Sage300WebApi/v1.0/-

/SAMLTD/AR/ARCustomers?$filter=CustomerNumber gt

'1100'&$skip=5&top=2&$count=true

Query options can be combined using the ampersand (&) symbol; however, each type of query

option should only appear once per request.

Sage 300 Web API – Developer Reference Page 17 of 27

5.1 Basic

Example: GET http://localhost/Sage300WebApi/v1.0/-

/SAMLTD/AR/ARCustomers('1200')

GET

{protocol}://{host-application-path}/{api-version}/-/{company}/{app-

module}/{resource}({entity-key})

Component Description Examples

{entity-key} '1200', CustomerNumber =

'BARMART'

Requesting for an entry returns a response with a single record. If the key value of the sought

after record is known ahead of time, a request for an entry is much more performant. The

response payload for an entry is also more streamlined since no OData feed container is

returned.

In order to request for an entity, an entity key must be supplied after the resource name of the

request URL. The entity key must be enclosed within parenthesis characters ().

5.1.1 Entity key without property name

The simplest way to construct an entity key is to just use the value of the key.

Strings values should be enclosed in single quote characters (for example: 'BARMART') but this

is not a requirement when no space characters appear within the value.

Numerical values should only contain numeric characters, without group separators. (for

example: 25)

5.1.2 Entity Key with property name

To make the entity key property explicit, a property name can be used identify the key property

followed be an equals character (=) and the value as described in the previous section. (for

example: BatchNumber = 65).

The use of a property names is more important when the resource key is composite.

5. Requesting a resource entry (HTTP GET)

Requesting a resource entry (HTTP GET)

Sage 300 Web API – Developer Reference Page 18 of 27

5.2 Composite Key

Example: GET http://localhost/Sage300WebApi/v1.0/-

/SAMLTD/AR/ARReceiptAndAdjustmentBatches(BatchRecordType = 'CA', BatchNumber =

65)

For resources that have more than one key segment, each segment value must appear in the

entity key or an error response would be returned. Key segment values must be separated by

a comma character (,). The key segment values can be in any order if property names are

provided, otherwise, they must follow the exact order as the key properties appear in the

associated entity type’s metadata.

For information about retrieving metadata data for a resource, refer to the “Discovering

resources” section of this document.

Sage 300 Web API – Developer Reference Page 19 of 27

Example: DELETE http://localhost/Sage300WebApi/v1.0/-

/SAMLTD/AR/ARCustomers('1200')

DELETE

{protocol}://{host-application-path}/{api-version}/-/{company}/{app-

module}/{resource}({entity-key})

Deletion of records through the Sage 300 Web API is done through a DELETE HTTP request.

Currently, Sage 300 Web API only supports deletion of one record per request. An entity key

is required in order to identify the record being removed. The URL for the DELETE request is

exactly the same as performing a GET of an entry, down to the format of the entity key.

6. Deleting a resource entry (HTTP DELETE)

Sage 300 Web API – Developer Reference Page 20 of 27

Example: POST http://localhost/Sage300WebApi/v1.0/-/SAMLTD/AR/ARCustomers

POST

{protocol}://{host-application-path}/{api-version}/-/{company}/{app-module}/{resource}

Insertion of records through the Sage 300 Web API is done through an HTTP POST request.

Currently, Sage 300 Web API only supports the insertion of one record per request. Unlike all

other requests up to this point, an insertion POST request requires that an entry payload be

sent as the request body.

For more information about the format of a payload, refer to the “Payload” section of this

document.

The easiest way to construct a payload for insertion is to use the response from a GET

request for a single entry of the same resource as a starting point. Extraneous properties can

be removed from this entry payload and the values of the other properties can be changed to

suit the needs of the new record. It is important to ensure that the entry payload does contain

all key properties however.

For resources where the key is system-generated (for instance, the transaction resources), the

new record being created will most likely have different key values than those found in the

request entry payload. Because of this, the response of insertion requests will contain an entry

payload of the record that was inserted into the system thus indicating the key values

generated by the system.

7. Inserting a resource entry (HTTP POST)

Sage 300 Web API – Developer Reference Page 21 of 27

Example: PUT http://localhost/Sage300WebApi/v1.0/-

/SAMLTD/AR/ARCustomers('1200')

PUT

{protocol}://{host-application-path}/{api-version}/-/{company}/{app-

module}/{resource}({entity-key})

Updates of records in Sage 300 Web API is done through HTTP PUT requests. Currently,

Sage 300 Web API only supports the update of one record per request. Similar to insertion, an

update request requires an entry payload be sent as the request body.

Like all other requests, PUT update requests supports partial payloads; however, you must

ensure that details payloads appear as you require them after the update. A PUT update

request acts as a replacement method and will purge any details (like optional field details)

that do not appear in the payload body.

8. Updating by replacement (HTTP PUT)

Sage 300 Web API – Developer Reference Page 22 of 27

Example: POST http://localhost/Sage300WebApi/v1.0/-

/SAMLTD/AR/ARPostInvoices($process)

POST

{protocol}://{host-application-path}/{api-version}/-/{company}/{app-

module}/{resource}($process)

Sage Web API supports the invocation of special service process resources to perform such

tasks as posting invoices and generating GL batches.

For a complete list of process endpoints, refer to the Sage 300 Web API Endpoint Reference

document, available under “Technical Documentation” here:

http://cdn.na.sage.com/docs/en/customer/300erp/Documentation.htm

To invoke a special service, a POST request must be made on the process endpoint with an

entity key of $process. An entry payload in the body of the request (similar to an insertion

request) is necessary to specify the parameters for the service invocation. Because process

resources do not support GET requests, it may be necessary to retrieve the template entry (as

described in the following section) to use as a starting point.

9. Invoking special services (HTTP POST)

http://cdn.na.sage.com/docs/en/customer/300erp/Documentation.htm

Sage 300 Web API – Developer Reference Page 23 of 27

Example: POST http://localhost/Sage300WebApi/v1.0/-

/SAMLTD/AR/ARPostInvoices($template)

POST

{protocol}://{host-application-path}/{api-version}/-/{company}/{app-

module}/{resource}($template)

Sage 300 Web API supports a way of retrieving a sample entry payload from a resource with a

template request. This is especially useful for process endpoints where a GET is not

supported or where no records exist to allow a GET of an entry.

In order to retrieve the resource template, an HTTP POST should be performed on the

resource using the entity key $template. The response will be an entry payload where all

properties contain the default value from the underlying business layer.

10. Retrieving resource templates (HTTP POST)

Sage 300 Web API – Developer Reference Page 24 of 27

In addition to returning error HTTP status codes for failures to process requests, Sage 300

Web API provides more information about the nature of the problem with standard OData error

payloads within the response body.

The following is an example of such a response for a failed request:

HTTP Status: 404

{

 "error": {

 "code": "RecordNotFound",

 "message": {

 "lang": "en-US",

 "value": "A Record cannot be found for the specified entity key"

 }

 }

}

11.1 Error code

The error code is a CamelCase string indicating the type of error encountered. For automated

resolutions of Sage 300 Web API errors, the error code should be used for determining the

nature of the issue since it is more precise than the HTTP status code. Here is a complete list

of error codes and their meanings:

Error Code Meaning

InternalServerError An unexpected and unhandled server error

Unauthorized Invalid credentials used in authentication header

Forbidden The specified user does not have enough rights to process the request

TooManyRequests Server was flooded with too many concurrent requests

InvalidParameters The parameters used in the URL are invalid or malformed

ResourceNotFound The resource requested does not exist

InvalidEntityKey The entity key is malformed or is not compatible with the requested resource

11. Errors

Errors

Sage 300 Web API – Developer Reference Page 25 of 27

RecordNotFound No record can be found for the specified entity key

MethodNotAllowed The request is not supported by the specified resource

InvalidPayload The payload body is not valid for the resource specified

InvalidAction A POST request was made with an entity key that is not $template or

$process

DBLinkError An application installation problem is preventing the request from being

processed

SessionError A system installation problem is preventing the request from being

processed

RecordDuplicate An insert request was made with a key value that already exist in the system

RecordInvalid The payload used for the request is not valid due to business rules

General The request failed due to an error in the business layer

11.2 Error message

The error message is a human readable phrase that describes the problem in an even more

precise manner than the error code. It is intended to be displayed to end users; however, this

should not be interpreted by automated systems, since the error message can vary greatly

under similar situations.

Sage 300 Web API – Developer Reference Page 26 of 27

It is possible to adjust the performance of Sage 300 Web API if improvements are required for

integration purposes.

12.1 Increase page size for GET requests

When large amounts of records need to be retrieved through Sage 300 Web API, the page

size setting can be increased to reduce the number of GET requests and thus reduce the

overall time for the entire process.

In order to increase the page size setting, you can use a text editor to open the Web.config file

located in the Online\WebApi folder under your Sage 300 installation folder. Search for the line

in this file that contains the following text:

<add key="PageSize" value="100" />

Increase the value to the required page size. The recommended setting for large numbers of

records is 1000.

12.2 Change IIS Idle Time-out settings

By default, IIS terminates a web application after 20 minutes of inactivity. This means that if

Sage 300 Web API requests are not made within 20 minutes of one another, a request will

take longer than usual to process. To curb this behavior, the IIS application pool Idle Time-out

setting can be adjusted.

To increase the Time-out time and Time-out Action:

1. Open IIS Manager.

2. In Application Pools, select Sage 300 Pool.

3. In the Actions pane, click Advanced Settings.

4. In the Process Model section, change the Idle Time-out Action from Terminate to

Suspend.

The Idle Time-out time should be increased to a more reasonable amount. 1447 minutes

is the recommended value, as it is greater than a single day.

12. Performance tips

Performance tips

Sage 300 Web API – Developer Reference Page 27 of 27

